dRonin  adbada4
dRonin firmware
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sha1.c
Go to the documentation of this file.
1 /*********************************************************************
2 * Filename: sha1.c
3 * Author: Brad Conte (brad AT bradconte.com)
4 * Copyright:
5 * Disclaimer: This code is presented "as is" without any guarantees.
6 * Details: Implementation of the SHA1 hashing algorithm.
7  Algorithm specification can be found here:
8  * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
9  This implementation uses little endian byte order.
10 *********************************************************************/
11 
12 /*************************** HEADER FILES ***************************/
13 #include <stdlib.h>
14 #include <memory.h>
15 #include "sha1.h"
16 
17 /****************************** MACROS ******************************/
18 #define ROTLEFT(a, b) ((a << b) | (a >> (32 - b)))
19 
20 /*********************** FUNCTION DEFINITIONS ***********************/
21 void sha1_transform(SHA1_CTX *ctx, const uint8_t data[])
22 {
23  uint32_t a, b, c, d, e, i, j, t, m[80];
24 
25  for (i = 0, j = 0; i < 16; ++i, j += 4)
26  m[i] = (data[j] << 24) + (data[j + 1] << 16) + (data[j + 2] << 8) + (data[j + 3]);
27  for ( ; i < 80; ++i) {
28  m[i] = (m[i - 3] ^ m[i - 8] ^ m[i - 14] ^ m[i - 16]);
29  m[i] = (m[i] << 1) | (m[i] >> 31);
30  }
31 
32  a = ctx->state[0];
33  b = ctx->state[1];
34  c = ctx->state[2];
35  d = ctx->state[3];
36  e = ctx->state[4];
37 
38  for (i = 0; i < 20; ++i) {
39  t = ROTLEFT(a, 5) + ((b & c) ^ (~b & d)) + e + ctx->k[0] + m[i];
40  e = d;
41  d = c;
42  c = ROTLEFT(b, 30);
43  b = a;
44  a = t;
45  }
46  for ( ; i < 40; ++i) {
47  t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[1] + m[i];
48  e = d;
49  d = c;
50  c = ROTLEFT(b, 30);
51  b = a;
52  a = t;
53  }
54  for ( ; i < 60; ++i) {
55  t = ROTLEFT(a, 5) + ((b & c) ^ (b & d) ^ (c & d)) + e + ctx->k[2] + m[i];
56  e = d;
57  d = c;
58  c = ROTLEFT(b, 30);
59  b = a;
60  a = t;
61  }
62  for ( ; i < 80; ++i) {
63  t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[3] + m[i];
64  e = d;
65  d = c;
66  c = ROTLEFT(b, 30);
67  b = a;
68  a = t;
69  }
70 
71  ctx->state[0] += a;
72  ctx->state[1] += b;
73  ctx->state[2] += c;
74  ctx->state[3] += d;
75  ctx->state[4] += e;
76 }
77 
78 void sha1_init(SHA1_CTX *ctx)
79 {
80  ctx->datalen = 0;
81  ctx->bitlen = 0;
82  ctx->state[0] = 0x67452301;
83  ctx->state[1] = 0xEFCDAB89;
84  ctx->state[2] = 0x98BADCFE;
85  ctx->state[3] = 0x10325476;
86  ctx->state[4] = 0xc3d2e1f0;
87  ctx->k[0] = 0x5a827999;
88  ctx->k[1] = 0x6ed9eba1;
89  ctx->k[2] = 0x8f1bbcdc;
90  ctx->k[3] = 0xca62c1d6;
91 }
92 
93 void sha1_update(SHA1_CTX *ctx, const uint8_t data[], size_t len)
94 {
95  size_t i;
96 
97  for (i = 0; i < len; ++i) {
98  ctx->data[ctx->datalen] = data[i];
99  ctx->datalen++;
100  if (ctx->datalen == 64) {
101  sha1_transform(ctx, ctx->data);
102  ctx->bitlen += 512;
103  ctx->datalen = 0;
104  }
105  }
106 }
107 
108 void sha1_final(SHA1_CTX *ctx, uint8_t hash[])
109 {
110  uint32_t i;
111 
112  i = ctx->datalen;
113 
114  // Pad whatever data is left in the buffer.
115  if (ctx->datalen < 56) {
116  ctx->data[i++] = 0x80;
117  while (i < 56)
118  ctx->data[i++] = 0x00;
119  }
120  else {
121  ctx->data[i++] = 0x80;
122  while (i < 64)
123  ctx->data[i++] = 0x00;
124  sha1_transform(ctx, ctx->data);
125  memset(ctx->data, 0, 56);
126  }
127 
128  // Append to the padding the total message's length in bits and transform.
129  ctx->bitlen += ctx->datalen * 8;
130  ctx->data[63] = ctx->bitlen;
131  ctx->data[62] = ctx->bitlen >> 8;
132  ctx->data[61] = ctx->bitlen >> 16;
133  ctx->data[60] = ctx->bitlen >> 24;
134  ctx->data[59] = ctx->bitlen >> 32;
135  ctx->data[58] = ctx->bitlen >> 40;
136  ctx->data[57] = ctx->bitlen >> 48;
137  ctx->data[56] = ctx->bitlen >> 56;
138  sha1_transform(ctx, ctx->data);
139 
140  // Since this implementation uses little endian byte ordering and MD uses big endian,
141  // reverse all the bytes when copying the final state to the output hash.
142  for (i = 0; i < 4; ++i) {
143  hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
144  hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
145  hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
146  hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
147  hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
148  }
149 }
void sha1_transform(SHA1_CTX *ctx, const uint8_t data[])
Definition: sha1.c:21
volatile int j
Definition: loadabletest.c:12
#define ROTLEFT(a, b)
Definition: sha1.c:18
uint8_t data[XFER_BYTES_PER_PACKET]
Definition: bl_messages.h:129
void sha1_init(SHA1_CTX *ctx)
Definition: sha1.c:78
uint32_t datalen
Definition: sha1.h:22
uint8_t i
Definition: msp_messages.h:97
uint8_t d
Definition: msp_messages.h:98
void sha1_update(SHA1_CTX *ctx, const uint8_t data[], size_t len)
Definition: sha1.c:93
Definition: sha1.h:20
uint32_t state[5]
Definition: sha1.h:24
uint64_t bitlen
Definition: sha1.h:23
void sha1_final(SHA1_CTX *ctx, uint8_t hash[])
Definition: sha1.c:108
uint32_t k[4]
Definition: sha1.h:25
uint8_t data[64]
Definition: sha1.h:21